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Simple groups of automorphisms of trees
determined by their actions on finite subtrees

Christopher Banks, Murray Elder and George A. Willis

Communicated by Christopher W. Parker

Abstract. We introduce the notion of the k-closure of a group of automorphisms of
a locally finite tree, and give several examples of the construction. We show that the
k-closure satisfies a new property of automorphism groups of trees that generalises Tits’
Property P . We prove that, apart from some degenerate cases, any non-discrete group
acting on a tree with this property contains an abstractly simple subgroup.

1 Introduction

Simple groups and their classification are a vital part of the structure theory of the
classes of groups that admit composition series, among which are the finite groups
and the Lie groups. Although totally disconnected, locally compact (t.d.l.c.) groups
do not admit composition series, it was shown in [7] that decomposing such groups
into simple pieces plays a role in their structure theory as well. In [24] the third
author showed that the local and global structures of simple t.d.l.c. groups are
linked when the group is compactly generated, and that invariants of the group,
such as the scale [22] and flat-rank [23], could possibly be parameters used in
a classification of such groups.

In this article we present a general construction that produces many new
examples of simple compactly generated t.d.l.c. groups acting on trees. Particular
classes of simple compactly generated t.d.l.c. groups have been studied in various
contexts. These include:

� Lie groups over fields of p-adic numbers and over fields of formal Laurent
series over some finite residue field, where the scale is a power of the charac-
teristic of the residue field and the flat-rank equals the usual algebraic rank;

� completions of Kac–Moody groups over finite fields [8, 9], where again the
scale is a power of the characteristic of the residue field and the flat-rank
equals the algebraic rank [5];
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236 C. Banks, M. Elder and G. A. Willis

� automorphism groups of buildings with negative curvature [15], where the
flat-rank is at most 1 (see [4]);

� groups of almost automorphisms of trees [16], where the flat-rank is infinite
and the scale depends on valencies of the tree [25];

� certain closed subgroups of automorphism groups of trees studied by Burger
and Mozes [6] and Tits [20], where the flat-rank is at most 1 and the scale
depends on valencies of the tree.

Currently it is not known how close this list is to being exhaustive, or if a classi-
fication is possible even for those cases where the flat-rank is 1. Along with those
that do not act on trees, there are several distinct subclasses of groups acting on
trees, including the rank 1 Lie and Kac-Moody groups.

The groups constructed and studied here extend and are motivated by the last
class of examples. The constructions in [6] and [20] satisfy Jacques Tits’ Prop-
erty P. Tits showed that if a group acting on a tree has this property, then a cer-
tain closed subgroup must be simple (apart from some obvious degenerate cases).
Amann [2] defines a slightly weaker Independence Property which coincides with
Property P for closed subgroups of the full automorphism group of the tree.

In this paper we define a family of independence properties called Property IPk
which generalise the Independence Property of Amann. We show that on closed
subgroups of the full automorphism group of the tree, this family coincides with
another family of properties called Property Pk , which generalise Tits’ Prop-
erty P . Property Pk is used in proving Theorem 7.3, which is an analogue of
Tits’ theorem, and states that groups with one of these properties (aside from the
same degenerate cases) also contain a simple subgroup.

We also provide a general method for constructing groups with these properties
from any group acting on a tree. Given any natural number k and a groupG acting
on a tree T , then G.k/ is defined to be the set of all automorphisms that, on each
ball of radius k in T , agree with some element ofG. This forms a closed subgroup
of Aut.T / called the k-closure of G, which satisfies Property IPk .

The article is organised as follows. In Section 2 we give the relevant terminol-
ogy on automorphism groups of trees and graphs, and recall several results from
Tits’ paper. In Section 3 we define the k-closure of a group acting on a tree, giving
a simple example and proving basic facts about the construction, in particular con-
ditions under which the resulting groups are non-discrete. In Section 4 we apply
the k-closure construction to some known examples of groups acting on trees. In
Section 5 we define the Independence Property IPk and show that the k-closure of
a group satisfies IPk . We also show that this property characterises precisely when
the sequence of k-closures terminates at G.k/ D G. In Section 6 we define Prop-
erty Pk and establish the relationship between this property and Property IPk .
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Simple groups of automorphisms of trees 237

In Section 7 we prove the simplicity result (Theorem 7.3) for groups satisfying
Property Pk . By this theorem, we now have a general method for finding simple
groups acting on trees, which we discuss in Section 8. We prove some results about
the simple groups obtained in this way, including the existence of infinite families
of distinct closed simple groups acting on a tree that do not have property P .

We note that in recent work Möller and Vonk [17] also define a new property
of groups acting on trees they call Property H, which is strictly weaker than Prop-
erty IPk . Groups that have Property H contain a topologically simple subgroup;
that is, it contains no nontrivial closed normal subgroups.

2 Preliminaries

For definitions and terminology concerning graphs, we refer to Serre [18]. A graph
X is determined by its vertex set V.X/ and its set of directed edgesE.X/. An edge
e 2 E.X/ can be written in the form .o.e/; t.e// 2 V.X/ � V.X/, and every edge
has a inverse edge .t.e/; o.e//, which we denote by e. The term edge-pair refers
explicitly to the pair ¹e; eº. In this paper all graphs are assumed to be simple (that
is, they have no loops or multiple edges) and locally finite.

Let Aut.X/ denote the group of automorphisms of X . If x; y 2 Aut.X/ and
v 2 V.X/, then x:v 2 V.X/ is the image of v under x. We may write multiplica-
tion in Aut.X/ with or without the composition symbol; in both cases it is always
performed from right to left, i.e. .yx/:v D y:.x:v/. An edge-inversion is an auto-
morphism g of X satisfying g.e/ D e for some e 2 E.X/.

In this paper T will denote a tree, and the regular (or homogenous) tree of
degree d (in which every vertex is adjacent to d others) is denoted Td . Given
an edge .v; w/ 2 E.T /, the semi-tree T.v;w/ is defined as the connected compo-
nent of T n¹.v; w/; .w; v/º containing w. Let B.v; k/ be the subtree formed by the
closed ball (with respect to the standard metric on T ) of radius k centered at the
vertex v 2 V.T /.

If G � Aut.X/ and Y is a proper subgraph of X , then the set of all g 2 G that
stabilise Y (that is, for which g.Y / D Y ) is denoted by StabG.Y /, and the set of
g 2 G that fix Y (that is, g:v D v for all v 2 V.Y /) is denoted by FixG.Y /).

We will say that a group G of automorphisms of X is vertex-transitive if for
some vertex v the orbitG:v D V.X/, and edge-transitive if for some edge pair the
orbits G:e [G:e D E.X/. For any vertex v let E.v/ WD ¹e 2 E.X/ W o.e/ D vº
denote the set of edges emanating from v; note that E.v/ is stabilised by FixG.v/.
We define the local action of G at v to be the permutation group induced by the
action of FixG.v/ on E.v/, and we say G is locally transitive if the local action at
every vertex is transitive.
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238 C. Banks, M. Elder and G. A. Willis

Recall that an infinite path in T is represented by a sequence C D .e1; e2; : : : /
of edges where t .ei / D o.eiC1/ for all i 2 N. A sequence which is infinite
in both directions represents a doubly-infinite path .: : : ; e�1; e1; e2; : : : /, where
t .ei / D o.eiC1/ for all i 2 Z. In this paper all paths are assumed to have no back-
tracking, that is, o.ei / ¤ t .eiC1/ for all i 2 Z. If the graph is a tree, this implies
paths have no self-intersection at all. If C;C 0 are two paths, then their intersection
is either empty or a path itself. The boundary, @T , of T is the set of equivalence
classes, ŒC �, of infinite paths in T , where two infinite paths, C and C 0, are equiv-
alent if and only if C \ C 0 is an infinite path. Elements of @T are known as the
ends of T , and a path C is called a representative of the end b if b D ŒC �. We say
that an automorphism g 2 G � Aut.T / stabilises the end b if the image under g
of any representative of b is another representative of b, and that g fixes the end b
if it fixes some representative of b.

The automorphism group of a tree can be equipped with a topology, whose basis
is given by the collection of all sets of the form

U .x;F / WD ¹y 2 Aut.T / W y:v D x:v for all v 2 F º

where x 2 Aut.T / and F is a finite vertex set. Under this topology Aut.T / is
a topological group. The open set Fix.v/ D U .1G ; ¹vº/ is a profinite group, as it
can be expressed as the projective limit of the finite groups Aut.B.v; k//. Since
profinite groups are compact and totally disconnected [26], it follows that Aut.T /
is a t.d.l.c. group, with compact open subgroups Fix.F / for all finite F .

Recall that every neighbourhood of the identity 1G in a t.d.l.c. groupG contains
a compact open subgroup U (see [21]). The fact that a compact group is discrete
if and only if it is finite implies the following lemma.

Lemma 2.1. A subgroup G � Aut.T / is discrete (with the subspace topology
induced by the one given above) if and only if there exists a vertex for which
StabG.v/ is a finite group.

2.1 Results of Jacques Tits

The property we will study in Section 5 is based on a property defined by Jacques
Tits, which he used to find simple groups.

Definition 2.2 ([20, Section 4]). Suppose G � Aut.T /, C is a path in T and
FixG.C / is the fixator of the path C . Define � to be the projection of V.T / onto
V.C / where �.v/ D x if x is the closest vertex in the path C to v. Let FixG.C /x
denote the action of FixG.C / restricted to ��1.x/. Then G satisfies Property P if
for any such C we have FixG.C / D

Q
x2V.C/ FixG.C /x .
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Remark 2.3. In the case whereC is just an edge .v; w/ 2 E.T /, PropertyP states
that FixG..v; w// decomposes into two independent actions on T.v;w/ and T.w;v/,
and consequently

FixG..v; w// D FixG.T.v;w// � FixG.T.w;v//:

This statement for edges defines the weaker Independence Property [2, Defini-
tion 9] which is shown to be equivalent to Tits’ Property P if G is closed.

It is also mentioned in [20] that groups that stabilise a proper subtree of T

or an end of T , contain many normal subgroups. For instance, if G D Fix.v/ is
the stabiliser of a vertex in the full automorphism group of T , then the groups
Fix.B.v; r// are normal subgroups of G for each r 2 N. We will make use of the
following three results, which are relevant to these cases.

Lemma 2.4 ([20, Lemma 4.1]). Let G be a group of automorphisms of a tree T .
Then the following are equivalent:

(i) G does not stabilise a proper non-empty subtree of T .

(ii) The orbit G:v of any vertex v 2 V.T / has non-empty intersection with any
semi-tree.

Proposition 2.5 ([20, Proposition 3.4]). If G � Aut.T / contains no translations
then G is contained in either the stabiliser of a vertex, the stabiliser of an edge or
the fixator of an end of T .

Lemma 2.6 ([20, Lemme 4.4]). Suppose T is a tree that is not a doubly-infinite
path and G;H are nontrivial subgroups of Aut.T / such that G normalises H .
If G does not stabilise a proper non-empty subtree or an end of T , then H also
does not stabilise a proper non-empty subtree or an end of T .

3 The k-closure of a group of automorphisms

Let x be an automorphism of T , v be a vertex and k be a natural number. Since
graph automorphisms preserve distance, x mapsB.v; k/ toB.x:v; k/. Let xjB.v;k/
denote the mapB.v; k/! B.x:v; k/ defined by xjB.v;k/:w D x:w, which we call
the restriction of x to B.v; k/. If U � Aut.T /, let U jB.v;k/ D ¹xjB.v;k/ W x 2 U º.
If y 2 Aut.T /, then

.yx/jB.v;k/ D yjB.x:v;k/ ı xjB.v;k/

In particular, x�1jB.x:v;k/ ı xjB.v;k/ and xjB.x�1:v;k/ ı x
�1jB.v;k/ act trivially

on B.v; k/.
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240 C. Banks, M. Elder and G. A. Willis

Definition 3.1. For G � Aut.T / and k 2 N, define the k-closure of G to be

G.k/ D ¹x 2 Aut.T / W 8v 2 V.T / 9g 2 G such that gjB.v;k/ D xjB.v;k/º:

Lemma 3.2. The set G.k/ is a subgroup of Aut.T /.

Proof. If x; y 2 G.k/ and v is any vertex, then we have two elements g1; g2 2 G
with g1jB.v;k/ D xjB.v;k/, and g2jB.x:v;k/ D yjB.x:v;k/. Then

.y ıx/jB.v;k/ D yjB.x:v;k/ ıxjB.v;k/ D g2jB.x:v;k/ ıg1jB.v;k/ D .g2 ıg1/jB.v;k/

so y ı x 2 G.k/. In addition we have g 2 G with gjB.x�1:v;k/ D xjB.x�1:v;k/, so
x�1jB.v;k/ D g

�1jB.v;k/ and hence x�1 2 G.k/.

The k-closure of G consists of automorphisms of T that on each ball of
radius k in T agree with some element of G. It is clear from this that the local
actions of G and G.k/ are identical.

The role of the group G is to provide a list of “allowed” actions for each
ball. In this sense the construction is comparable to the universal groups defined
in [6, Section 3.2]. They consist of automorphisms of T that on each ball of
radius 1 perform an “allowed” permutation from some permutation group F ,
which is isomorphic to the local action of the group. This idea is illustrated by
the following example.

Example 3.3. Consider the following subgroup G of the automorphism group
of the ternary tree T3. Let i W E.T3/! ¹1; 2; 3º be an edge-labelling where
i.e/ D i.e/ for each edge e, and every vertex is incident on one edge of each label
(see [6, Section 3.2]). Then for each v 2 V.T3/ the restriction i jE.v/ of i to E.v/
is a bijection on ¹1; 2; 3º, and it follows that for any automorphism x 2 Aut.T3/
and any v 2 V.T3/ the map

�x;v D i jE.x:v/ ı x ı .i jE.v//
�1

is a permutation of ¹1; 2; 3º. Let

G D ¹x 2 Aut.T3/ W �x;v D �x;w for all v;w 2 V.T3/º

be the group of automorphisms that act as the same permutation around each
vertex. This is a subgroup of Aut.T3/ since

i jE..yx/:v/ ı .yx/ ı .i jE.v//
�1

D i jE..yx/:v/ ı y ı .i jE.x:v//
�1
ı i jE.x:v/ ı x ı .i jE.v//

�1: (3.1)

Let S3 denote the group of permutations of ¹1; 2; 3º, and define � W G ! S3
by �.g/ D �g;v. This is well defined (since �g;v is the same for any v) and a
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Simple groups of automorphisms of trees 241

surjective homomorphism by equation (3.1). From this it follows that for any
v;w 2 V.T3/ and for any � 2 S3 there exists exactly one g 2 G such that g:v D w
and �.g/ D � . The special case when w D v implies that StabG.v/ Š S3 for all
vertices v, and hence by Lemma 2.1 G is discrete.

Recall any automorphism x of T3 is assigned permutations �x;v for all ver-
tices v. From above there always exists an element gv 2 G with �.gv/ D �x;v
and where gv maps v to x:v. Now x does the same permutation as gv at v, and
hence they agree on the ballB.v; 1/. Therefore x 2 G.1/ and so the 1-closure ofG
is the full automorphism group Aut.T3/.

On the other hand, if an automorphism is in the 2-closure, then it must be the
same permutation around a vertex u and an adjacent vertex v, and also the same
permutation around v and a third vertex w next to it, which means it is the same
permutation around every vertex. Hence the 2-closureG.2/ is equal toG. By a sim-
ilar argument all k-closures are equal to G for k � 2.

In Section 4 we will see more interesting examples of groups arising from
the k-closure construction. The remainder of this section records several facts
about k-closures. The first results explain the sense in which these groups are
a ‘closure’ of G.

Proposition 3.4. Let G � Aut.T / and k 2 N.

(i) G.k/ is a closed subgroup of Aut.T /.

(ii) G.r/ � G.k/ for all r > k.

(iii)
T
k2N G

.k/ D G, the closure of G.

(iv) G.l/ D .G.k//.l/ whenever l � k.

(v) The orbit G.k/:v is equal to G:v for every v 2 V.T /.

Proof. (i) Since

Aut.T /nG.k/ D ¹x 2 Aut.T / W 9vx 2 V.T / with xjB.vx ;k/ ¤ gjB.vx ;k/; g 2Gº

D

[
x…G.k/

U .x; B.vx; k//

is the union of open sets, G.k/ is closed.
(ii) If x 2 G.r/, then for every vertex v there is some element g 2 G with

gjB.v;r/ D xjB.v;r/, and since r > k, we have gjB.v;k/ D xjB.v;k/.
(iii) Since g 2 G agrees with itself everywhere, it follows that G is contained

in G.k/ for every k. Thus
T
k2N G

.k/ contains G, and is closed by part (i), and
so
T
k2N G

.k/ � G. For the reverse inclusion it is enough to show that any open
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242 C. Banks, M. Elder and G. A. Willis

set containing x 2
T
k2N G

.k/ also contains some g 2 G, which holds because
the sets U .x; B.v; k// (v 2 V.T /, k 2 N) form a basis for the subspace topology
on
T
k2N G

.k/ and each contains at least one g 2 G such that gjB.v;k/ D xjB.v;k/.
(iv) Since G � G.k/, it follows that

G.l/ � .G.k//.l/:

Suppose x 2 .G.k//.l/; then for all v 2 V.T / there exist yv 2 G.k/ such that
yvjB.v;l/ D xjB.v;l/. Note that since l � k, we have

B.v; l/ � B.v; k/:

Since yv 2 G.k/, there exists an element gv 2 G such that yvjB.v;l/ D gjB.v;l/.
Then xjB.v;l/ D gjB.v;l/ which implies that x 2 G.l/.

(v) Since every x:v 2 G.k/:v satisfies x:v D g:v for some g 2 G, we know
that G.k/:v is contained in G:v; equality follows because G � G.k/.

The question of what happens to .G.k//.l/ when l > k is more subtle, and will
be discussed in Section 5.

The next result gives a criterion for when the k-closure of a group is non-
discrete. This will prove to be necessary when attempting to construct new
examples of simple groups.

Theorem 3.5. Let G � Aut.T /, fix k 2 N and suppose that G does not stabilise
any proper subtree of T . Then G.k/ is non-discrete if and only if there is an edge
.v; w/ 2 E.T / and g 2 G such that

gjB.v;k/\B.w;k/ D 1 and gjB.w;k/ ¤ 1: (3.2)

Equivalently, G.k/ is discrete if and only if FixG.B.v; k/ \ B.w; k// D ¹1º for
every .v; w/ 2 E.T /.

Proof. IfG.k/ is non-discrete, then for any vertex u there is a non-identity element
h 2 StabG.k/.u/ such that hjB.u;k/ D 1. Since T n ¹uº D

S
t2B.u;1/ T.u;t/, there

exists a vertex t adjacent to u such that hjT.u;t/
¤ 1. There are two cases; in the first

case hjB.u;k/ D 1 and hjB.t;k/ ¤ 1, so set .v; w/ D .u; t/. Otherwise there must
be an edge .v; w/ in T.u;t/ such that hjB.v;k/ D 1 and hjB.w;k/ ¤ 1. Choosing
g 2 G such that hjB.w;k/ D gjB.w;k/ shows that (3.2) holds.

For the converse, assume that (3.2) holds for some edge .v; w/ 2 E.T / and
let u 2 V.T / and m 2 N. It will be shown that there is a non-identity element
h 2 G.k/ with hjB.u;m/ D 1. Note first of all that, if t is any vertex in T.v;w/,
then B.v; k/ \ B.t; k/ � B.v; k/ \ B.w; k/ and, if t is any vertex in T.w;v/, then
B.w; k/\B.t; k/� B.w; k/\B.v; k/. Since gjB.v;k/\B.w;k/ D 1, the element h1
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Simple groups of automorphisms of trees 243

defined by
h1jT.v;w/

D gjT.v;w/
;

h1jT.w;v/
D 1jT.w;v/

is contained in G.k/. As no proper sub-tree of T is invariant under G, Lemma 2.4
implies that the orbit G:u intersects every semi-tree of T . Choose a semi-tree
T.r;s/ that is contained in T.w;v/ and such that d.v; r/ � m and choose x 2 G
such that x:u 2 T.r;s/. Then we have B.x:u;m/ \ T.v;w/ D ; and it follows that
h D xh1x

�1 belongs to G.k/, is nontrivial and hjB.u;m/ D 1.
For the final claim of the theorem, note that, if G.k/ is not discrete, then the set

FixG.B.v; k/ \ B.w; k// is not trivial for the edge .v; w/ in equation (3.2). On the
other hand, ifG.k/ is discrete, then gjB.v;k/\B.w;k/ D 1 implies that gjB.w;k/ D 1
for every g 2 G and .v; w/ 2 E.T /. Hence, if gjB.v;k/\B.w;k/ D 1, then we
have gjB.v0;k/\B.w;k/ D 1 for every v0 adjacent to w, which in turn implies that
gjB.v0;k/ D 1 for every v0 adjacent to w, whence gjB.v0;kC1/ D 1. Continuing by
induction shows that gjB.v0;j / D 1 for every j > k, that is, that g D 1.

g

v w

Figure 1. An automorphism f 2 G that satisfies equation (3.2) in Theorem 3.5 for
k D 2. In the proof the corresponding h1 2 G.k/ is defined to fix the left semi-tree
and agree with f on the right semi-tree.

Corollary 3.6. Suppose G � Aut.T / acts with finitely many orbits on T and does
not stabilise any proper non-empty subtree. Then G is non-discrete if and only if
G.k/ is non-discrete for infinitely many (and hence all) k 2 N.

Proof. Suppose that G.k/ is non-discrete for infinitely many k. Since the action
of G on T is co-compact, there are only finitely many G-orbits in E.T /. By
the pigeonhole principle it may be assumed when applying Theorem 3.5 that the
edge .v; w/ is always the same. Then the theorem gives an infinite number of
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244 C. Banks, M. Elder and G. A. Willis

elements g 2 G that fix w. On the other hand, if there is any j 2 N for which
G.j / is discrete then every subgroup, in particular G (and each G.k/; k > j ), is
discrete.

Corollary 3.7. Suppose G � Aut.T / does not stabilise any proper subtree of T

and also suppose that G.k/ is discrete for some k 2 N. Then G.k/ D G.

Proof. By Proposition 3.4 (iii) we have that G � G.k/. Now suppose x is in G.k/

and let .v; w/ 2 E.T /. By definition of G.k/, there exist gv; gw 2 G such that
gvjB.v;k/ D xjB.v;k/ and gw jB.w;k/ D xjB.w;k/. Then gv and gw have the same
action on B.v; k/ \ B.w; k/ and hence g�1v gw fixes B.v; k/ \ B.w; k/. Since
G.k/ is discrete, Theorem 3.5 implies that g�1v gw is the identity automorphism;
that is, gv D gw . Applying this to every edge, it follows that x agrees with the
same element of G on every ball of radius k, and hence x 2 G.

The last results in this section give general criteria for two subgroups of Aut.T /
to produce the same k-closures.

Proposition 3.8. Two groups G;H � Aut.T / satisfy G.k/ D H .k/ if and only if
for each g 2 G and v 2 V.T / there is an element hv 2 H such that .h�1v g/jB.v;k/
belongs to StabH .v/jB.v;k/, and similarly for h 2 H .

Proof. Assume that G.k/ D H .k/ and consider g 2 G and a vertex v 2 V.T /.
Since g 2 G.k/, there exists an element hv 2 H such that hvjB.v;k/ D gjB.v;k/.
Hence .h�1v g/jB.v;k/ D 1, which belongs to StabG.v/jB.v;k/. A similar argument
applies for each h 2 H .

Conversely, assume that for each g 2 G and v 2 V.T / there is an hv 2 H such
that .h�1v g/jB.v;k/ belongs to StabH .v/jB.v;k/ and consider x 2 G.k/. For each
v 2 V.T /, there is an element gv 2 G such that gvjB.v;k/ D xjB.v;k/ and then,
by assumption, there is an hv 2 H such that .h�1v gv/jB.v;k/ 2 StabH .v/jB.v;k/.
Suppose that .h�1v gv/jB.v;k/ D ajB.v;k/ with a 2 H . Then

hva 2 H and hvajB.v;k/ D xjB.v;k/:

Hence x 2 H .k/ and it has been shown thatG.k/ � H .k/. ThatH .k/ � G.k/ may
be shown similarly.

Corollary 3.9. Suppose we have two groups G;H � Aut.T /. Let the following
hold:

(i) StabG vjB.v;k/ D StabH vjB.v;k/ for all v 2 V.T /,

(ii) G;H and G \H act on T with the same orbits.

Then G.k/ D H .k/.
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Proof. Consider g 2 G and v 2 V.T /. By (ii), there is an element hv 2 G \H
such that hv:v D g:v, so that h�1v g 2 G and belongs to StabG.v/. Then (i) implies
that h�1v gjB.v;k/ 2 StabH .v/jB.v;k/ as required by Proposition 3.8. A similar
argument applies for h 2 H and hence the criterion for G.k/ to equal H .k/ is
established.

Remark 3.10. (i) The definition of G.k/ constrains its elements to act in the same
way as those of G up to distance k from each vertex of T . It is thus a closely
related construction to the ‘finitely constrained’ groups of automorphisms of
rooted trees studied in [19]. In the case of k-closures, basing the constraints on
the group G ensures that there do exist automorphisms of the tree that satisfy
them. The problem then becomes to determine how much larger G.k/ is than G.

(ii) The k-closure is a special case of a much more general construction. Let
G � H be groups of permutations of some set X . Then G and H act on P.X/,
the power set ofX . Let C �P.X/ be invariant under theG-action and define the
C -closure of G in H to be

GC
D ¹x 2 H W for each C 2 C there exists g 2 G such that xjC D gjC º:

Then GC is a subgroup of H and leaves C invariant. Returning to the case treated
here when H D Aut.T /, the set C could be any isomorphism class of subtrees.
These subtrees could be finite or infinite such as, for example, the set of infinite
paths in T or the set of doubly-infinite paths. The proof of Proposition 3.4 (i)
applies to show that each of these C -closures yields a closed subgroup of Aut.T /.

4 Examples

In this section we discuss some examples of groups acting on trees, and apply the
k-closure construction in each case. These examples illustrate some of the results
in the previous section, and cover three general constructions that produce a wide
variety of groups acting on trees.

We briefly note that Example 3.3 is one of a family of discrete groups acting
vertex-transitively and locally-transitively on a ternary tree, of which there are
exactly seven [10, 12]. These seven examples show some interesting behaviour in
terms of their k-closures for small k, however the details are quite technical – see
the first author’s thesis [3].

4.1 An infinite series of k-closures

In this subsection we show that the group G D PSL.2;Qp/ acting on its Bruhat–
Tits tree has distinct non-discrete k-closures for all k 2 N. This is an example
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246 C. Banks, M. Elder and G. A. Willis

of a matrix group over a local field, which is the general case discussed by Serre
in [18, Section II.1].

We begin by giving the structure of the Bruhat–Tits tree. Let he1; e2i denote
the span over Zp of two independent vectors e1; e2 2 Q2

p (these are called lattices
of Q2

p). One such example is

Lp WD

* 
1

0

!
;

 
0

p

!+
:

Let V be the set of all such lattices, and define an equivalence relation � on V
such that

L � L0 ” L0 D �L for some � 2 Q�p:

Then G acts on V by M W he1; e2i 7! hMe1;Me2i, which preserves the equiva-
lence relation since �Mei DM�ei .

Define a graph X with vertex set V=� and with an edge .L;L0/ if there exist
e1; e2 such that L � he1; e2i and L0 � he1; p˙1e2i. The action of G preserves
edges since hMe1;M.p˙1e2/i D hMe1; p˙1.Me2/i.

Set

v WD

"* 
1

0

!
;

 
0

1

!+#
:

Then clearly v is adjacent to ŒLp�. For any f 2 ¹0; 1; : : : ; p � 1º we have"* 
1

0

!
;

 
f

1

!+#
D

"* 
1

0

!
;

 
0

1

!+#
and hence

ŒLf � WD

"* 
p

0

!
;

 
f

1

!+#
is adjacent to v for all f 2 ¹0; 1; : : : ; p�1º. Indeed the vertex v has valency pC1
and it follows from [18] that X D TpC1.

If M is a matrix fixing v, then one can write the basis vectors of L0 as combi-
nations of the column vectors in M , which must be in .Zp/2. Hence

FixG.v/ D PSL.2;Zp/:

Similar calculations (involving writing column vectors of M in terms of the basis
vectors of a lattice) show that for any r � 0,

FixG.B.v; r// D

´
.aij / 2 PSL.2;Zp/ WM �

 
1 0

0 1

!
.mod pr/

µ
:
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Fix k 2 N and set

M D

 
1 pk

0 1

!
:

Then M fixes B.v0; k/ but not B.v0; k C 1/. For any f 2 ¹0; : : : ; p � 1º let

a D f C a1p C � � � C akp
k :

Then the vertices ´"* 
pkC1

0

!
;

 
a

1

!+#µ
lie in the ball centred at the vertex ŒLf � (which is adjacent to v0) of radius k. But
then

M

 
a

1

!
D

 
f C a1p C � � � C .ak C 1/p

k

1

!
which implies that the matrix M has nontrivial action on B.ŒLf �; k/ for any
f 2 ¹0; : : : ; p � 1º. The same calculation shows any matrix fixing B.v; k/ but not
B.v; k C 1/ has nontrivial action on B.ŒLf �; k/ for almost all f 2 ¹0; : : : ; p � 1º
(i.e. all but possibly one such f ). Hence an automorphism ˛ of TpC1 that fixes
B.v; k/, agrees with M on B.ŒLf �; k/ (for a fixed f ¤ 0) and fixes B.ŒLf 0 �; k/
for all f 0 ¤ f does not agree with any element of G on B.v0; k C 1/, and hence
is not in G.kC1/. Thus G.kC1/ ¤ G.k/.

4.2 Baumslag–Solitar groups

Recall that the graph of groups construction produces a group that acts on an asso-
ciated Bass–Serre tree [18]. An example of a group arising from this construction
is the Baumslag–Solitar group

BS.m; n/ D ha; t j tamt�1 D ani:

As discussed in [13], the vertices of the Bass–Serre tree are given by cosets whai,
where w is a freely reduced word over the alphabet

¹t; at; : : : ; an�1t; t�1; at�1; : : : ; am�1t�1º;

and directed edges .uhai; vhai/ labelled by t˙1 if vhai D uai t˙1hai for some i .
The resulting tree TBS.m;n/ is graph isomorphic to TmCn, and the group acts vertex-
transitively on TBS.m;n/ by acting on the left of cosets.
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248 C. Banks, M. Elder and G. A. Willis

Lemma 4.1. Let whai be a vertex and define i (resp. j ) to be the number of t
(resp. t�1) in w. Then the subgroup hamjni

i is contained in the fixator of whai
under the action of BS.m; n/. Consequently, if A is a finite subtree of TBS.m;n/,
then Fixhai.A/ is nontrivial.

Proof. The relations defining BS.m; n/ imply that

acnt D tacm and acmt�1 D t�1acn

for c 2 Z. By definition, am
jni

contains enough am’s and an’s to commute pastw;
that is,

am
jni

w D wam
inj

:

SinceA is a finite set of vertices, we can let I (resp. J ) be the maximum number
of t (resp. t�1) in any word w where whai 2 A. Then amJnI fixes each vertex
in A.

Note that some infinite paths in the Bass–Serre tree also have nontrivial fixators.
For instance, for each nonnegative integer i the vertex .atat�1/i hai is fixed by an,
so the infinite path spanned by these vertices starting at hai has a nontrivial fixator.

Let � denote the homomorphism from BS.m; n/ to Z that sends a word w to its
t -exponent sum. Then BS.m; n/ preserves the level sets of �, which form a parti-
tion we denote by P .

Proposition 4.2. Let G D BS.m; n/. Then:

(i) The local action of G.k/ at any vertex is isomorphic to Z=.lcm.m; n//Z.

(ii) G.k/ preserves P .

Proof. To prove (i) we consider the local action of G at the vertex v D hai. This
is sufficient since G.k/ and G have the same local actions and G acts vertex-
transitively. The set B.v; 1/ contains vertices whai where w has at most one t; t�1

letter. Thus aj fixes these vertices if and only if j is divisible by both m and n,
so the fixator of B.v; 1/ in G is halcm.m;n/i. Then the local action is equal to the
quotient group FixG.v/=FixG.B.v; 1// which is isomorphic to Z=.lcm.m; n//Z.

To prove (ii) it is enough to show that G.1/ preserves P , since G.k/ � G.1/.
Since any two are connected by a finite directed path, where each edge is labelled
by t or t�1, it is sufficient to show that G.1/ preserves the labels of the directed
edges. This follows immediately from the definition of G.1/ since G preserves
labelled directed edges.

In Section 8.4 we will be restricting our attention to the groups BS.m; n/ where
m; n are relatively prime, in which case lcm.m; n/ D mn and the local action is
isomorphic to Z=mZ � Z=nZ.
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Now we discuss the structure of automorphisms x 2 BS.m; n/.1/ that fix the
vertex labelled by hai, assuming that m; n are coprime. For each v 2 V.TBS.m;n//

there exists a word w 2 BS.m; n/ whose action agrees with x on B.v; 1/. Since x
fixes a vertex, it follows that x:v and v lie in the same part of P for all ver-
tices v 2 V.TBS.m;n// (see Proposition 4.2). Hence w preserves the t -exponent
sum of v, and hence �.w/ D 0. Indeed we can assume that w 2 hai.

To construct any such automorphism, begin by assigning to the vertex hai an
element ai where 0 � i � mn � 1. Then proceeding inductively, assign a num-
ber �v to each vertex vhai adjacent to an already assigned vertex uhai such that

� �v 2 Z=nZ if the edge .uhai; vhai/ is labelled t ,

� �v 2 Z=mZ if the edge .uhai; vhai/ is labelled t�1.

Then inductively define x 2 BS.m; n/.1/ to agree with ai on B.hai; 1/, and to
agree with acv on B.vhai; 1/, where .uhai,vhai/ is an edge, l is the smallest inte-
ger such that al fixes the word v, and cv D cu C l�v. These conditions ensure that
acv and acu agree on the edge .uhai,vhai/ and hence that x is an automorphism
of TBS.m;n/, which is uniquely identified by the collection ¹�v W v 2 V.TBS.m;n//º.

4.3 Automorphism groups of graphs

Let � be any graph, and let T be the universal covering tree T of � . There exists
a surjection  W T ! � such that the restriction of  to B.v; 1/ is a bijection
for all v 2 V.T /. Then the fundamental group �1.�/ of � acts naturally on T

(it is precisely the set of automorphisms g for which  ı g D  ) and there exists
a subgroup G � Aut.T / for which

�1.�/ ,! G
�
� Aut.�/

is a short exact sequence, where �.g/ W  .v/ 7!  .g:v/ defines the group homo-
morphism induced by the covering map  (see [11]).

It is important to note that whilst �1.�/ is a normal subgroup of G, it is gener-
ally not normal in G.k/.

Proposition 4.3. If � is a finite graph, then G is discrete, and G.k/ D G for all
k � diam.�/.

Proof. Suppose k � diam.�/. Then for some v 2 V.T /we have  .B.v; k//D � ,
and hence if g 2 G fixesB.v; k/, then �.g/ is the identity automorphism of � , and
hence g is the identity automorphism of T . Hence ¹1Gº is open in the topology
which implies that G is discrete, and hence by Corollary 3.7, G.k/ D G.
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0

1

2

34

5

6

Figure 2. The graph C.3; 7; 1/ referenced in Example 4.4.

Example 4.4. Let � WD C.p; r; 1/ be one of the graphs introduced in [14]. Vertices
of � are labelled ¹.i; j / W i 2 Cr ; 1 � j � pº with .i; j / adjacent to .k; l/ if and
only if k D i ˙ 1 (see Figure 2). Allow also the extension to r D1, defined to
be the infinite graph with vertex set ¹.i; j / W i 2 Z; 1 � j � pº and the same adja-
cency relation. Then � is regular of degree 2p and has diameter b r

2
c. The universal

cover of � is T2p, and there exists a vertex-transitive groupGp;r � Aut.T2p/ com-
pleting the exact sequence

�1.�/ ,! Gp;r
�
� Aut.�/:

Assume r � 4, then the local action ofGp;r at v 2 V.T / is isomorphic to S2p Ì C2,
which is independent of r .

It turns out that for r ¤1 the groups Gp;r ; Gp;1 have the same k-closures for
all k < r

2
(exactly the values for which StabGp;r

.v/jB.v;k/ D StabGp;1
.v/jB.v;k/).

We present the argument for k D 1; the other cases are very similar.
First take a vertex v0 2 V.T2p/ to be the base point of the universal cover

 W T2p ! C.p;1; 1/. Then Gp;1 acts vertex-transitively, and so for any vertex
v 2 V.T2p/ there exists an h 2 Gp;1 with h:v0 D v and �.h/ 2 Aut.C.p;1; 1//.
To see that h belongs to Gp;r , take the labelling on T2p given by  and construct
a new labelling .i; j / 7! .i mod r; j /. We have constructed a universal cover  0

of C.p; r; 1/ with base point v0, and a corresponding �0 W Gp;r � Aut.C.p; r; 1/
such that h 2 Gp;r . Hence Gp;r \Gp;1 acts vertex-transitively on T2p. We have
already established that both groups have the same local action, and hence by
Corollary 3.9 they have the same 1-closure.
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5 Independence Properties IPk

In this section we define a series of properties, denoted by IPk for k 2 N, that
will be satisfied by the k-closure of any group of tree automorphisms. They pro-
vide a condition under which the descending series of k-closures terminates at
G D G.k/ for some k 2 N.

Definition 5.1 (Property IPk). Suppose G � Aut.T / and fix k 2 N and an edge
e D .v; w/. Define

Fk;e WD FixG.B.v; k/ \ B.w; k//:

Then G satisfies Property IPk if for any choice of edge e D .v; w/,

Fk;e D FixFk;e
.T.v;w//FixFk;e

.T.w;v//:

fv

T(w,v) T(v,w)

v w

fw

T(w,v) T(v,w)

v w

Figure 3. Let f 2 FixG.B.v; 2/ \ B.w; 2// be the automorphism of T3 indicated
in Figure 1, and define fv; fw as above. Then f D fvfw , and if G satisfies Prop-
erty IP2, then fv; fw 2 G.

Note that when k D 1, then B.v; 1/ \ B.w; 1/ is just the edge e D .v; w/ and
F1;e D FixG.e/. Hence Property IP1 is equivalent to the Independence Property
of Amann as discussed in Remark 2.3. Also, Property IPk is stronger than Prop-
erty H [17], which just requires FixG.T.v;w// to be nontrivial for every edge in T .

Proposition 5.2. Let G � Aut.T / and k 2 N. Then G.k/ has Property IPk .

Proof. Let e D .v; w/ be an edge. ClearlyFk;e � FixFk;e
.T.v;w//FixFk;e

.T.w;v//.
Conversely, suppose f 2 Fk;e. Construct an automorphism f1 by setting f1 D f
on all B.u; k/ where u 2 T.w;v/, and f1 trivial on all B.t; k/ where t 2 T.v;w/.
Similarly construct f2 by setting f1 D f on all B.t; k/ where t 2 T.v;w/, and f2
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252 C. Banks, M. Elder and G. A. Willis

trivial on all B.u; k/ where u 2 T.w;v/. It is clear that f D f1f2, and since f1
and f2 agree with either f or the identity on every ball, each is in G.k/. Hence
f D f1f2 2 FixFk;e

.T.v;w//FixFk;e
.T.w;v// as required.

Proposition 5.3. Let G � Aut.T / and k 2 N. If G satisfies Property IPk , then it
also satisfies Property IPkC1.

Proof. Let e D .v; w/ be any edge, and suppose x 2 FkC1;e. SinceFkC1;e � Fk;e
andG satisfies Property IPk , it follows that x D x1x2 where x1 2 FixFk;e

.T.v;w//

and x2 2 FixFk;e
.T.w;v//. Then x1x2 fixes B WD B.v; k C 1/ \ B.w; k C 1/, but

since x2 fixes B \ T.w;v/, so must x1. But x1 also fixes B \ T.v;w/ and hence
x1 2 FkC1;e. Similarly x2 2 FkC1;e, and therefore

FkC1;e D FixFkC1;e
.T.v;w//FixFkC1;e

.T.w;v//I

that is, G satisfies Property IPkC1.

As mentioned earlier, taking the l-closure of G.k/ when l � k obtains the
l-closure of G. On the other hand, if l > k, the above result implies that G.k/

satisfies Property IPl . The following theorem implies that the l-closure of G.k/

is equal to G.k/.

Theorem 5.4. Let G � Aut.T /. If G satisfies Property IPk , then G.k/ D G, and
if G.k/ D G, then G satisfies Property IPk .

Proof. Suppose G has property IPk; we prove by induction that G.r/ D G.k/ for
all r � k. For the inductive hypothesis, assume for some such r thatG.r/ D G.k/,
and take g 2 G.k/ and v a vertex. It will be shown that there is an element y 2 G
such that yjB.v;rC1/ D gjB.v;rC1/ and hence g is in the .r C 1/-closure of G.

By the inductive hypothesis g 2 G.r/, and hence there exists an element z 2 G
so that zjB.v;r/ D gjB.v;r/, which also implies z�1g 2 G.r/ fixes B.v; r/. Let
v1; : : : ; vm be the vertices that are distance exactly r � k C 1 from v. Then for all
i D 1; : : : ; m there exists an ai 2 G such that ai jB.vi ;k/ D .z

�1g/jB.vi ;k/. Each
ai fixes the intersection B.vi ; k/ \ B.v; r/, which is equal to B.vi ; k/ \ B.wi ; k/
where wi is the vertex adjacent to vi that is closest to v. SinceG has property IPk ,
it follows that ai D bici where bi fixes T.vi ;wi / and ci fixes T.wi ;vi /.

Now b1b2 � � � bm fixes the ball of radius r around v, and in each ball B.vi ; r/ it
acts like z�1g (since each bi only acts non-trivially on just one B.vi ; r/). There-
fore .zb1b2 � � � bm/�1g 2 G fixes B.v; r C 1/. Taking y D zb1b2 � � � bm proves
that g 2 G.rC1/, so by induction G.r/ D G.k/ for all r � k. By Proposition 3.4
we have G.k/ D

T
G.r/ D G.

The second assertion follows directly from Proposition 5.2.
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The main result of [1] implies that there exist free groups acting on regular trees
which are dense in either Aut.T / or the simple subgroup Aut.T /C (see Section 7).
Such a group cannot have Property IP1 but its closure does.

Corollary 5.5. LetG � Aut.T / and k 2 N. ThenG does not satisfy Property IPk
for any k if and only if G has infinitely many distinct k-closures.

Proof. If G has finitely many k-closures, there is a smallest one G.j /. But then

G.j / D
\
k2N

G.k/

which by Proposition 3.4 (iii) is equal to G. Hence by Theorem 5.4 the closure G
has Property IPj . On the other hand if G has infinitely many k-closures, then
the sequence of G.k/ is never constant. Hence for all k we have G.k/ ¤ G, and
so by Theorem 5.4 the closure G does not satisfy Property IPk .

5.1 Examples

Recall that in Section 4.1 we showed that the k-closures of G D PSL.2;Qp/ are
all distinct. It follows that the closure of PSL.2;Qp/ is not equal to any of its
k-closures, and hence does not satisfy Property IPk for any k.

Proposition 5.6. Whenm; n are coprime, G D BS.m; n/ acting on its Bass–Serre
tree (as discussed in Section 4.2) does not satisfy Property IPk for any k 2 N.

Proof. Consider the edge .v; w/ WD .hai; thai/. We show that for this edge the
fixators of the two semitrees T.v;w/ and T.w;v/ under G are both trivial. Since by
Lemma 4.1 FixG.B.v; k/ \ B.w; k// is nontrivial, it then follows that G does not
satisfy Property IPk .

Suppose acn
j

(c > 0 and not divisible by n) is a nontrivial automorphism in the
fixator of the semitree T.v;w/. Such an automorphism must have this form since it
fixes the vertex hai. The semitree T.v;w/ contains vertices .ta/i thai for all i 2 N.
Assume that i � j ; then

acn
j

.ta/i t D .ta/jacm
j

.ta/i�j t :

To continue passing acm
j

through this word we require cmj to be a multiple of n.
Since c is not divisible by n, it follows thatmj is a multiple of n, which contradicts
our assumption that m; n are coprime.

A similar argument holds for the semitree T.tv;v/, which contains vertices
labelled by .t�1a/i t�1hai for all i 2 N.

Brought to you by | University of Newcastle, Australia
Authenticated

Download Date | 3/16/15 4:36 AM



254 C. Banks, M. Elder and G. A. Willis

Remark 5.7. Recall that for any discrete group G � Aut.T / there exists an edge
.v; w/ and a value of k for which FixG.B.v; k/ \ B.w; k// is trivial. In this case
Property IPk is trivially satisfied and G.k/ D G. In our illustrative example from
Section 3 (Example 3.3) this holds for k D 2. For the examples obtained from
the automorphism group of some finite graph (see Example 4.4) this holds for k
greater than or equal to half the diameter of the graph.

6 Property Pk

In this section we define the natural generalisation of Tits’ Property P , which we
call Property Pk , and relate it to the independence properties defined in the previ-
ous section. Property Pk will be used in the next section to prove our simplicity
result. The notation defined in the next two definitions will be used throughout
both sections.

Definition 6.1. IfX is a subtree of T , then letXk denote the subtree of T spanned
by the set ¹x 2 V.T / W d.x;X/ � kº of vertices at distance at most k from X .

Definition 6.2. SupposeG � Aut.T /, letC be any path (finite or infinite) in T and
define � to be the projection of V.T / onto V.C /. For each x 2 V.C / define Fx to
be the permutation group acting on ��1.x/ induced by FixG.C k�1/. Then we say
G satisfies Property Pk if and only if for all such C the natural homomorphism
ˆ W FixG.C k�1/!

Q
x2V.C/ Fx is an isomorphism.

It is immediate from this definition that if a group satisfies Property Pk , then it
must also satisfy Property IPk .

Proposition 6.3. Suppose G � Aut.T / satisfies Property IPk , and let C be any
finite path in T . Let � denote the projection of V.T / onto V.C /, and for each
vertex x 2 V.C / define Fx to be the permutation group acting on ��1.x/ induced
by FixG.C k�1/. Then ˆ W FixG.C k�1/!

Q
x2V.C/ Fx is an isomorphism.

Proof. Let C be a path of length N defined by vertices x0; : : : ; xN . We show
by induction on N that if G satisfies Property IPk , then ˆ is bijective. When
N D 1, the path C is a single edge .x0; x1/ and Property IPk implies that ˆ is an
isomorphism.

For the inductive hypothesis let N > 1 and assume ˆ is bijective for all paths
of length N � 1. It is clear that ˆ is injective. Now take any

QN
iD1 fi , fi 2 Fxi

.
Let C 0 denote the path x0 : : : xN�1 of length N � 1, let � 0 denote the projection
of V.T / onto V.C 0/, define F 0x to be the permutation group acting on � 0�1.x/
induced by FixG.C 0k/ and let ˆ0 denote the natural homomorphism.
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Since � 0�1.xN�1/ is the disjoint union of ��1.xN�1/ and ��1.xN /, define
f 0N�1 2 F

0
xN�1

to agree with fN�1 on ��1.xN�1/ and with fN on ��1.xN /.
By inductive hypothesis there exists an f 2 FixG.C 0k�1/ such that

ˆ0.f / D f1 : : : fN�2f
0
N�1:

But since f agrees with fN on ��1.xN /, it fixes ��1.xN / \ C k�1. Hence we
have f 2 FixG.C k�1/ and

ˆ.f / D

NY
iD1

fi

as required.

Corollary 6.4. Let G be a closed subgroup of Aut.T /. Then G satisfies Prop-
erty IPk if and only if G satisfies Property Pk .

Proof. From Proposition 6.3 it remains to show that if G satisfies Property IPk ,
and C is either an infinite or doubly-infinite path, then ˆ is an isomorphism.
We give the proof for the second case only, as this is the case we will encounter in
the next section and both proofs are essentially the same.

Index the vertices xi in the path C and consider an element
Q
fi of

Q
i2Z Fxi

.
Define Cn to be the path from x�n to xn. Apply Proposition 6.3 to Cn, in each
case denoting the projection of V.T / onto V.Cn/ by �n and the natural isomor-
phism by ˆn. This results in a sequence ¹gnºn2N where gn 2 FixG.C k�1n /, and
ˆn.gn/ D f

0
�nf�nC1 : : : fn�1f

0
n, where f 0n is the permutation on ��1n .xn/ that,

for j � n, agrees with each fj on ��1.xj / (and similarly for f 0�n). Since G is
closed, the sequence ¹gnº converges to some g 2 FixG.C k�1/. But ˆn.gn/ and
ˆ.g/ agree on the sets ��1.x/ for all x 2 V.Cn�1/. Hence ˆ.g/ is equal to the
limit of the sequence ¹ˆn.gn/º, which is

Q
fi .

7 Simplicity

In this section we will prove our main simplicity result (Theorem 7.3), which
utilises Property Pk. The proof of this theorem follows the same process as the
proof of [20, Theoreme 4.5]. The following lemma, which is our analogue
of [20, Lemme 4.3], is required.

Lemma 7.1. SupposeG � Aut.T / is a closed subgroup and fix k 2 N. Let h 2 G
induce on some doubly-infinite path C in T a nontrivial translation. LetK denote
the fixator of C k�1 in G. If G satisfies Property Pk , then

K D Œh;K� WD ¹hgh�1g�1 W g 2 Kº:
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256 C. Banks, M. Elder and G. A. Willis

Proof. Clearly h stabilises C k , and hence hgh�1 2 K. This implies K � Œh;K�.
Now suppose that f 2 K; we must find g 2 K such that hgh�1g�1 D f . Let a
be the amplitude of the translation h and form a natural bijection between V.C /
and Z. By Definition 6.2, f D

Q
fz where fz 2 Fz , and g can be defined by

finding appropriate gz 2 Fz for all z 2 Z. For each z 2 Z notice that h induces an
isomorphism �z W Fz ! FzCa defined by �z.x/ D hxh�1. We define gz induc-
tively as follows: if 0 � z � a � 1, then gz is arbitrarily chosen in Fz; if z � a,
then gz D f �1z :�z�a.gz�a/; if z < 0, then gz D ��1z .fzCagzCa/. It is easy to
check that g D

Q
gz satisfies hgh�1g�1 D f as required.

We define the following subgroup of a group of tree automorphisms, which will
be shown to be simple in the theorem below.

Definition 7.2. Let G � Aut.T / be closed and fix k 2 N. Then GCk is the
subgroup of G generated by all elements g 2 G for which there exists an edge
.v; w/ 2 E.T / such that g fixes B.v; k/ \ B.w; k/ (which is equivalent to g fix-
ing B.v; k � 1/ [ B.w; k � 1/).

Recall that if G is discrete, then it can only satisfy Property Pk trivially for
any k 2 N; in this case GCk is trivial. On the other hand it is immediate from the
topology on G < Aut.T / that if G is non-discrete, then GCk is nontrivial.

Theorem 7.3. Let T be a tree and fix k 2 N. Suppose G � Aut.T / does not
stabilise a proper non-empty subtree or an end of T , and satisfies Property Pk .
Then every nontrivial subgroup of G normalised by GCk contains GCk ; in par-
ticular GCk is simple (or trivial).

Proof. AssumeGCk is nontrivial, letH be a nontrivial subgroup ofG normalised
by GCk , and let e D .v; w/ be any edge of T . To prove the theorem it suffices to
show that H contains the fixator of the semi-tree T.v;w/ in

Fk;e WD FixG.B.v; k/ \ B.w; k//

(H will contain the fixator of T.w;v/ in Fk;e by a similar argument). Then it follows
from Property IPk thatH contains Fk;e D FixFk;e

.T.v;w//FixFk;e
.T.w;v// for any

edge e, and hence H contains all generators of GCk .
Since GCk is normal in G, it follows from Lemma 2.6 that GCk does not

stabilise a proper non-empty subtree or an end of T . We assumed that H is
normalised by GCk , so again by Lemma 2.6 the subgroup H does not stabilise
a proper non-empty subtree or an end of T . Therefore by Proposition 2.5 there
exists a doubly-infinite path C of T and a nontrivial translation h 2 H on C .
We will show that it may be assumed that C � T.v;w/.
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For any vertex v of C the orbit H:v has non-empty intersection with T.v;w/
by Lemma 2.4; that is, there exists an element g 2 H with g.C / \ T.v;w/ ¤ ;.
By replacing C; h by g.C /; ghg�1 we can assume that C \ T.v;w/ is non-empty.
In particular this means C \ T.v;w/ is at least an infinite path. Let b; b0 be the
ends of T for which C contains representatives, at least one of which, say b, has
representatives in C \ T.v;w/. SinceH does not stabilise a proper non-empty sub-
tree or an end of T , there exists some l 2 H such that l.b0/ … ¹b; b0º. In addition,
l�1.C / is a doubly-infinite path that does not contain any representative of b0

(since l.b0/ … ¹b; b0º).
Now let � represent the projection of T onto C ; that is, for all x 2 V.T /

define �.x/ to be the vertex of C closest to x. There are two possibilities for the
image �.T.w;v// of the other semi-tree; either �.T.w;v// is a single vertex in T.v;w/
(when C is contained in T.v;w/), or C 0 WD �.T.w;v// is the representative of b0, an
end of T.w;v/, that begins at w. Now since l�1.C / does not contain any represen-
tative of b0, the image �.l�1.C // must be contained in some representative of b,
which is also contained in C . Define C 00 to be the shortest such representative of b
(i.e. �.l�1.C // � C 00 � C ). Choose an integer n such that hn.C 00/ and C 0 are as
far away as we like, say distance k. Given such n the chain hn.l�1.C // is disjoint
from T.w;v/ and hence contained in T.v;w/. Replacing C and h by hn.l�1.C // and
hnl�1hlh�n we can assume that C � T.v;w/, as is (by our choice of n)

C k�1 WD span¹x 2 V.T / W d.x; C / � kº:

Let K denote the fixator of C k�1 in Fk;e; clearly K � GCk . Lemma 7.1
implies that K D Œh;K�, which is in H (since H is normalised by GCk ). Also
since C k � T.v;w/, it follows that K contains the fixator of T.v;w/ in Fk;e. There-
fore FixFk;e

.T.v;w// � H as required.

8 Constructing simple groups

The preceding results underpin a general method for constructing simple groups
acting on trees that, beginning with some arbitrary group G, constructs its
k-closure (which has Property IPk) and applies Theorem 7.3 to obtain the
simple group .G.k//Ck . In this section further properties of .G.k//Ck are proven.

Lemma 8.1. Suppose G � Aut.T / does not stabilise any proper subtree of T .
Then:

(i) .G.k//Ck is an open (hence closed) subgroup of G.k/,

(ii) .G.k//Ck is non-discrete if and only if G.k/ is non-discrete,

(iii) .G.k//Ck satisfies Property IPk .
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258 C. Banks, M. Elder and G. A. Willis

Proof. (i) This statement follows since the group is generated by the open sets
FixG.k/.B.v; k/ \ B.w; k//.

(ii) If G.k/ is discrete, then all of its subgroups are discrete. Similarly if G.k/ is
non-discrete, then all of its open subgroups are non-discrete.

(iii) Consider an edge e D .v; w/ and let Fk;e WD FixG.k/.B.v; k/ \ B.w; k//.
By Proposition 5.2, G.k/ has Property IPk , which implies that Fk;e is equal to
the product FixFk;e

.T.v;w//FixFk;e
.T.w;v//. By definition, Fk;e and the factors

belong to .G.k//Ck , and are therefore equal to their counterparts in .G.k//Ck .
Hence .G.k//Ck also satisfies Property IPk .

Theorem 8.2. Suppose G � Aut.T / does not stabilise any proper subtree of T .
Then .G.r//Cr � .G.k//Ck for all r > k, with equality if and only ifG.r/ D G.k/.

Proof. For the first part, note that G.r/ � G.k/, and hence every generator in
.G.r//Cr is a generator in .G.k//Ck .

Suppose G.r/ D G.k/ and let g 2 .G.k//Ck be a generator. Then there exists
an edge .v; w/ such that g fixes B.v; k/ \ B.w; k/. By Lemma 8.1 (iii), .G.k//Ck

has Property IPk and hence we have g D g1g2, where g1 2 FixFk;e
.T.v;w// and

g2 2 FixFk;e
.T.w;v//. Since g1 2 G.k/ (and henceG.r/) and g1 fixes T.v;w/, there

exists some edge .t; u/ 2 T.v;w/ such that g fixes B.t; r/ \ B.u; r/. Hence g1 is
a generator in .G.r//Cr . Similarly g2 is a generator in .G.r//Cr , and hence we
have g 2 .G.r//Cr .

On the other hand assume .G.r//Cr D .G.k//Ck . Let x 2 G.k/, v 2 V.T / and
pick some g 2 G such that xjB.v;k/ D gjB.v;k/. Then g�1x fixes B.v; k/ and
hence is in .G.k//Ck . Then from the assumption g�1x 2G.r/, and since g 2G.r/,
we have gg�1x D x 2 G.r/.

Corollary 8.3. Suppose that G � Aut.T / does not stabilise any proper subtree
of T , and does not satisfy Property IPk for any k. Then there are infinitely many
distinct non-discrete simple groups .G.k//Ck .

Proof. By Corollary 5.5 there are infinitely many distinct G.k/, which implies
that G.k/ ¤ G for all k. By Theorem 8.2 there are infinitely many distinct
simple groups .G.k//Ck . By Corollary 3.7 every G.k/ is non-discrete, and hence
by Lemma 8.1 each .G.k//Ck is non-discrete.

Example 8.4. Recall from Section 4.1 that the k-closures of PSL.2;Qp/ are all
non-discrete and distinct. Also recall from Proposition 5.6 that the Baumslag–
Solitar group BS.m; n/ acting on its Bass–Serre tree does not satisfy Property IPk
for any k 2 N, assuming that m; n are relatively prime. Hence in these examples
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there are infinitely many distinct (as subgroups of Aut.TmCn/) non-discrete simple
groups .G.k//Ck found by our construction.

We can describe the generators of the simple group .BS.m; n/.1//C1 using the
structure of automorphisms in the 1-closure. In Section 4.2 we constructed all
automorphisms of the 1-closure that fix the vertex labelled by hai. Such an auto-
morphism fixes an edge incident on hai (and hence is a generator) if and only if
the permutation c assigned to hai is a multiple of eitherm or n. Note that since the
group is vertex-transitive, any other generator is the conjugate of one of these auto-
morphisms by a translation, which we can assume to be contained in BS.m; n/.

In order to explicitly describe (and possibly classify) simple groups arising from
this process, there are two issues which still need to be addressed. The first problem
is obtaining an algebraic description of a group’s k-closure. This has been deter-
mined for the class of universal groups in [6], which satisfy Property P1. However
we expect this will become increasingly difficult as k increases. Secondly, whilst
we can show that two simple groups are distinct as subgroups of Aut.T /, this does
not ensure they are non-isomorphic as topological groups. We require a method
of determining when two groups have isomorphic k-closures, and hence contain
isomorphic simple subgroups.
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